= cohere_embeddings :type: processor :status: experimental :categories: ["AI"] //// THIS FILE IS AUTOGENERATED! To make changes, edit the corresponding source file under: https://github.com/redpanda-data/connect/tree/main/internal/impl/. And: https://github.com/redpanda-data/connect/tree/main/cmd/tools/docs_gen/templates/plugin.adoc.tmpl //// // © 2024 Redpanda Data Inc. component_type_dropdown::[] Generates vector embeddings to represent input text, using the Cohere API. Introduced in version 4.37.0. ```yml # Config fields, showing default values label: "" cohere_embeddings: base_url: https://api.cohere.com api_key: "" # No default (required) model: embed-english-v3.0 # No default (required) text_mapping: "" # No default (optional) dimensions: search_document ``` This processor sends text strings to the Cohere API, which generates vector embeddings. By default, the processor submits the entire payload of each message as a string, unless you use the `text_mapping` configuration field to customize it. To learn more about vector embeddings, see the https://docs.cohere.com/docs/embeddings[Cohere API documentation^]. == Examples [tabs] ====== Store embedding vectors in Qdrant:: + -- Compute embeddings for some generated data and store it within xrefs:component:outputs/qdrant.adoc[Qdrant] ```yamlinput: generate: interval: 1s mapping: | root = {"text": fake("paragraph")} pipeline: processors: - cohere_embeddings: model: embed-english-v3 api_key: "${COHERE_API_KEY}" text_mapping: "root = this.text" output: qdrant: grpc_host: localhost:6334 collection_name: "example_collection" id: "root = uuid_v4()" vector_mapping: "root = this"``` -- ====== == Fields === `base_url` The base URL to use for API requests. *Type*: `string` *Default*: `"https://api.cohere.com"` === `api_key` The API key for the Cohere API. [CAUTION] ==== This field contains sensitive information that usually shouldn't be added to a config directly, read our xref:configuration:secrets.adoc[secrets page for more info]. ==== *Type*: `string` === `model` The name of the Cohere model to use. *Type*: `string` ```yml # Examples model: embed-english-v3.0 model: embed-english-light-v3.0 model: embed-multilingual-v3.0 model: embed-multilingual-light-v3.0 ``` === `text_mapping` The text you want to generate a vector embedding for. By default, the processor submits the entire payload as a string. *Type*: `string` === `dimensions` Specifies the type of input passed to the model. *Type*: `string` *Default*: `"search_document"` |=== | Option | Summary | `classification` | Used for embeddings passed through a text classifier. | `clustering` | Used for the embeddings run through a clustering algorithm. | `search_document` | Used for embeddings stored in a vector database for search use-cases. | `search_query` | Used for embeddings of search queries run against a vector DB to find relevant documents. |===