= aws_bedrock_embeddings :type: processor :status: experimental :categories: ["AI"] //// THIS FILE IS AUTOGENERATED! To make changes, edit the corresponding source file under: https://github.com/redpanda-data/connect/tree/main/internal/impl/. And: https://github.com/redpanda-data/connect/tree/main/cmd/tools/docs_gen/templates/plugin.adoc.tmpl //// // © 2024 Redpanda Data Inc. component_type_dropdown::[] Computes vector embeddings on text, using the AWS Bedrock API. Introduced in version 4.37.0. [tabs] ====== Common:: + -- ```yml # Common config fields, showing default values label: "" aws_bedrock_embeddings: model: amazon.titan-embed-text-v1 # No default (required) text: "" # No default (optional) ``` -- Advanced:: + -- ```yml # All config fields, showing default values label: "" aws_bedrock_embeddings: region: "" endpoint: "" credentials: profile: "" id: "" secret: "" token: "" from_ec2_role: false role: "" role_external_id: "" model: amazon.titan-embed-text-v1 # No default (required) text: "" # No default (optional) ``` -- ====== This processor sends text to your chosen large language model (LLM) and computes vector embeddings, using the AWS Bedrock API. For more information, see the https://docs.aws.amazon.com/bedrock/latest/userguide[AWS Bedrock documentation^]. == Examples [tabs] ====== Store embedding vectors in Clickhouse:: + -- Compute embeddings for some generated data and store it within https://clickhouse.com/[Clickhouse^] ```yamlinput: generate: interval: 1s mapping: | root = {"text": fake("paragraph")} pipeline: processors: - branch: request_map: | root = this.text processors: - aws_bedrock_embeddings: model: amazon.titan-embed-text-v1 result_map: | root.embeddings = this output: sql_insert: driver: clickhouse dsn: "clickhouse://localhost:9000" table: searchable_text columns: ["id", "text", "vector"] args_mapping: "root = [uuid_v4(), this.text, this.embeddings]" ``` -- ====== == Fields === `region` The AWS region to target. *Type*: `string` *Default*: `""` === `endpoint` Allows you to specify a custom endpoint for the AWS API. *Type*: `string` *Default*: `""` === `credentials` Optional manual configuration of AWS credentials to use. More information can be found in xref:guides:cloud/aws.adoc[]. *Type*: `object` === `credentials.profile` A profile from `~/.aws/credentials` to use. *Type*: `string` *Default*: `""` === `credentials.id` The ID of credentials to use. *Type*: `string` *Default*: `""` === `credentials.secret` The secret for the credentials being used. [CAUTION] ==== This field contains sensitive information that usually shouldn't be added to a config directly, read our xref:configuration:secrets.adoc[secrets page for more info]. ==== *Type*: `string` *Default*: `""` === `credentials.token` The token for the credentials being used, required when using short term credentials. *Type*: `string` *Default*: `""` === `credentials.from_ec2_role` Use the credentials of a host EC2 machine configured to assume https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html[an IAM role associated with the instance^]. *Type*: `bool` *Default*: `false` Requires version 4.2.0 or newer === `credentials.role` A role ARN to assume. *Type*: `string` *Default*: `""` === `credentials.role_external_id` An external ID to provide when assuming a role. *Type*: `string` *Default*: `""` === `model` The model ID to use. For a full list see the https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html[AWS Bedrock documentation^]. *Type*: `string` ```yml # Examples model: amazon.titan-embed-text-v1 model: amazon.titan-embed-text-v2:0 model: cohere.embed-english-v3 model: cohere.embed-multilingual-v3 ``` === `text` The prompt you want to generate a response for. By default, the processor submits the entire payload as a string. *Type*: `string`